Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Med Decis Making ; 43(4): 445-460, 2023 05.
Article in English | MEDLINE | ID: covidwho-2239028

ABSTRACT

INTRODUCTION: Clinical prediction models (CPMs) for coronavirus disease 2019 (COVID-19) may support clinical decision making, treatment, and communication. However, attitudes about using CPMs for COVID-19 decision making are unknown. METHODS: Online focus groups and interviews were conducted among health care providers, survivors of COVID-19, and surrogates (i.e., loved ones/surrogate decision makers) in the United States and the Netherlands. Semistructured questions explored experiences about clinical decision making in COVID-19 care and facilitators and barriers for implementing CPMs. RESULTS: In the United States, we conducted 4 online focus groups with 1) providers and 2) surrogates and survivors of COVID-19 between January 2021 and July 2021. In the Netherlands, we conducted 3 focus groups and 4 individual interviews with 1) providers and 2) surrogates and survivors of COVID-19 between May 2021 and July 2021. Providers expressed concern about CPM validity and the belief that patients may interpret CPM predictions as absolute. They described CPMs as potentially useful for resource allocation, triaging, education, and research. Several surrogates and people who had COVID-19 were not given prognostic estimates but believed this information would have supported and influenced their decision making. A limited number of participants felt the data would not have applied to them and that they or their loved ones may not have survived, as poor prognosis may have suggested withdrawal of treatment. CONCLUSIONS: Many providers had reservations about using CPMs for people with COVID-19 due to concerns about CPM validity and patient-level interpretation of the outcome predictions. However, several people who survived COVID-19 and their surrogates indicated that they would have found this information useful for decision making. Therefore, information provision may be needed to improve provider-level comfort and patient and surrogate understanding of CPMs. HIGHLIGHTS: While clinical prediction models (CPMs) may provide an objective means of assessing COVID-19 prognosis, provider concerns about CPM validity and the interpretation of CPM predictions may limit their clinical use.Providers felt that CPMs may be most useful for resource allocation, triage, research, or educational purposes for COVID-19.Several survivors of COVID-19 and their surrogates felt that CPMs would have been informative and may have aided them in making COVID-19 treatment decisions, while others felt the data would not have applied to them.


Subject(s)
COVID-19 , Decision Making , Humans , COVID-19 Drug Treatment , Prognosis
2.
Intelligence-based medicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2167075

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is associated with high morbidity and mortality. Identification of ARDS enables lung protective strategies, quality improvement interventions, and clinical trial enrolment, but remains challenging particularly in the first 24 h of mechanical ventilation. To address this we built an algorithm capable of discriminating ARDS from other similarly presenting disorders immediately following mechanical ventilation. Specifically, a clinical team examined medical records from 1263 ICU-admitted, mechanically ventilated patients, retrospectively assigning each patient a diagnosis of "ARDS” or "non-ARDS” (e.g., pulmonary edema). Exploiting data readily available in the clinical setting, including patient demographics, laboratory test results from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology reports, we applied an iterative pre-processing and machine learning framework. The resulting model successfully discriminated ARDS from non-ARDS causes of respiratory failure (AUC = 0.85) among patients meeting Berlin criteria for severe hypoxia. This analysis also highlighted novel patient variables that were informative for identifying ARDS in ICU settings.

3.
BMC Med ; 20(1): 456, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2139292

ABSTRACT

BACKGROUND: Supporting decisions for patients who present to the emergency department (ED) with COVID-19 requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized patients with COVID-19, in different locations and across time. METHODS: We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was developed on Dutch data. These models were validated on subsequent second-wave data at the same site (temporal validation) and at the other site (geographic validation). We assessed model performance by the Area Under the receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit. RESULTS: Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfactory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS systematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data. CONCLUSIONS: NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pandemic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space during a dynamic pandemic.


Subject(s)
COVID-19 , Humans , Prognosis , COVID-19/diagnosis , Hospital Mortality , ROC Curve , New York City
4.
J Endocr Soc ; 6(12): bvac144, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2109236

ABSTRACT

Context: SARS-CoV-2 infects cells via the angiotensin converting enzyme 2 (ACE2) receptor, whose downstream effects "counterbalance" the classical renin angiotensin aldosterone system (RAAS). Objective: We aimed to determine to what extent circulating RAAS biomarker levels differ in persons with and without COVID-19 throughout the disease course. Methods: We measured classical (renin, aldosterone, aldosterone/renin ratio [ARR], Ang2, ACE activity) and nonclassical (ACE2, Ang1,7) RAAS biomarkers in hospitalized COVID-19 patients vs SARS-CoV-2 negative controls. We compared biomarker levels in cases with contemporaneous samples from control patients with upper respiratory symptoms and a negative SARS-CoV-2 PCR test. To assess RAAS biomarker changes during the course of COVID-19 hospitalization, we studied cases at 2 different times points ∼ 12 days apart. We employed age- and sex-adjusted generalized linear models and paired/unpaired t tests. Results: Mean age was 51 years for both cases (31% women) and controls (50% women). ARR was higher in the first sample among hospitalized COVID-19 patients vs controls (P = 0.02). ACE activity was lower among cases at their first sample vs controls (P = <0.001). ACE2 activity, Ang 1,7, and Ang2 did not differ at the 2 COVID-19 case time points and they did not differ in COVID-19 cases vs controls. Additional adjustment for body mass index (BMI) did not change our findings. Conclusions: High ARR, independent of BMI, may be a risk marker for COVID-19 hospitalization. Serum ACE activity was lower in patients with COVID-19 vs controls at the beginning of their hospitalization and then increased to similar levels as controls, possibly due to lung injury, which improved with inpatient disease management.

5.
Chest ; 159(5): 2109-2110, 2021 05.
Article in English | MEDLINE | ID: covidwho-1382294
6.
Clin Infect Dis ; 75(1): e380-e388, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886374

ABSTRACT

BACKGROUND: Open-label platform trials and a prospective meta-analysis suggest efficacy of anti-interleukin (IL)-6R therapies in hospitalized patients with coronavirus disease 2019 (COVID-19) receiving corticosteroids. This study evaluated the efficacy and safety of sarilumab, an anti-IL-6R monoclonal antibody, in the treatment of hospitalized patients with COVID-19. METHODS: In this adaptive, phase 2/3, randomized, double-blind, placebo-controlled trial, adults hospitalized with COVID-19 received intravenous sarilumab 400 mg or placebo. The phase 3 primary analysis population included patients with critical COVID-19 receiving mechanical ventilation (MV). The primary outcome was proportion of patients with ≥1-point improvement in clinical status from baseline to day 22. RESULTS: There were 457 and 1365 patients randomized and treated in phases 2 and 3, respectively. In phase 3, patients with critical COVID-19 receiving MV (n = 298; 28.2% on corticosteroids), the proportion with ≥1-point improvement in clinical status (alive, not receiving MV) at day 22 was 43.2% for sarilumab and 35.5% for placebo (risk difference, +7.5%; 95% confidence interval [CI], -7.4 to 21.3; P =.3261), a relative risk improvement of 21.7%. In post hoc analyses pooling phase 2 and 3 critical patients receiving MV, the hazard ratio for death for sarilumab vs placebo was 0.76 (95% CI, .51 to 1.13) overall and 0.49 (95% CI, .25 to .94) in patients receiving corticosteroids at baseline. CONCLUSIONS: This study did not establish the efficacy of sarilumab in hospitalized patients with severe/critical COVID-19. Post hoc analyses were consistent with other studies that found a benefit of sarilumab in patients receiving corticosteroids. CLINICAL TRIALS REGISTRATION: NCT04315298.


Subject(s)
COVID-19 Drug Treatment , Adult , Antibodies, Monoclonal, Humanized , Humans , Prospective Studies , Treatment Outcome
7.
Am J Med Qual ; 37(4): 327-334, 2022.
Article in English | MEDLINE | ID: covidwho-1741052

ABSTRACT

Accurate determinations of the time of intubation (TOI) are critical for retrospective electronic health record (EHR) data analyses. In a retrospective study, the authors developed and validated an improved query (Ti) to identify TOI across numerous settings in a large health system, using EHR data, during the COVID-19 pandemic. Further, they evaluated the affect of Ti on peri-intubation patient parameters compared to a previous method-ventilator parameters (Tv). Ti identified an earlier TOI for 84.8% (n = 1666) of cases with a mean (SD) of 3.5 hours (15.5), resulting in alternate values for: partial pressure of arterial oxygen (PaO 2 ) in 18.4% of patients (mean 43.95 mmHg [54.24]); PaO 2 /fractional inspired oxygen (FiO 2 ) in 17.8% of patients (mean 48.29 [69.81]), and oxygen saturation/FiO 2 in 62.7% (mean 16.75 [34.14]), using the absolute difference in mean values within the first 4 hours of intubation. Differences in PaO 2 /FiO 2 using Ti versus Tv resulted in the reclassification of 7.3% of patients into different acute respiratory distress syndrome (ARDS) severity categories.


Subject(s)
COVID-19 , Respiration, Artificial , Data Analysis , Electronic Health Records , Humans , Intubation, Intratracheal , Oxygen , Pandemics , Respiration, Artificial/methods , Retrospective Studies
8.
BMC Pulm Med ; 22(1): 51, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1666648

ABSTRACT

BACKGROUND: Understanding heterogeneity seen in patients with COVIDARDS and comparing to non-COVIDARDS may inform tailored treatments. METHODS: A multidisciplinary team of frontline clinicians and data scientists worked to create the Northwell COVIDARDS dataset (NorthCARDS) leveraging over 11,542 COVID-19 hospital admissions. The data was then summarized to examine descriptive differences based on clinically meaningful categories of lung compliance, and to examine trends in oxygenation. FINDINGS: Of the 1536 COVIDARDS patients in the NorthCARDS dataset, there were 531 (34.6%) who had very low lung compliance (< 20 ml/cmH2O), 970 (63.2%) with low-normal compliance (20-50 ml/cmH2O), and 35 (2.2%) with high lung compliance (> 50 ml/cmH2O). The very low compliance group had double the median time to intubation compared to the low-normal group (107.3 h (IQR 25.8, 239.2) vs. 39.5 h (IQR 5.4, 91.6)). Overall, 68.8% (n = 1057) of the patients died during hospitalization. In comparison to non-COVIDARDS reports, there were less patients in the high compliance category (2.2% vs. 12%, compliance ≥ 50 mL/cmH20), and more patients with P/F ≤ 150 (59.8% vs. 45.6%). There is a statistically significant correlation between compliance and P/F ratio. The Oxygenation Index is the highest in the very low compliance group (12.51, SD(6.15)), and lowest in high compliance group (8.78, SD(4.93)). CONCLUSIONS: The respiratory system compliance distribution of COVIDARDS is similar to non-COVIDARDS. In some patients, there may be a relation between time to intubation and duration of high levels of supplemental oxygen treatment on trajectory of lung compliance.


Subject(s)
COVID-19/physiopathology , Hypoxia/virology , Lung/physiopathology , Respiratory Distress Syndrome/virology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , COVID-19/therapy , Case-Control Studies , Disease Progression , Female , Humans , Hypoxia/physiopathology , Hypoxia/therapy , Male , Middle Aged , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Function Tests , Retrospective Studies , Treatment Outcome
9.
Cureus ; 13(11): e19828, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1547691

ABSTRACT

Recent landmark trials have increased the use of sodium-glucose cotransporter 2 inhibitors (SGLT-2i) in patients with type 2 diabetes (T2D). A rare but serious side effect of SGLT-2i is euglycemic diabetic ketoacidosis (euDKA), which usually occurs in the setting of acute illness such as the coronavirus disease 2019 (COVID-19). We report a distinctive case of a patient with hyperlipidemia and T2D on SGLT-2i therapy who presented with hypertriglyceridemia-induced pancreatitis (HTGP) concurrently with euDKA and COVID-19. The patient's initial labs included venous blood gas pH of 7.27, a blood glucose level of 146 mg/dL, serum triglyceride (TG) greater than 8,300 mg/dL and lipase of 527 U/L. Viral polymerase chain reaction (PCR) result for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was also positive. We suspect this patient has a primary disorder of lipoprotein metabolism which was exacerbated by stress from euDKA and COVID-19 infection. The patient was treated with intravenous fluids, fasting and intravenous insulin infusion. Resolution of euDKA and improvement of hypertriglyceridemia to less than 1,000 mg/dL occurred by day 6 and the patient was transitioned to subcutaneous basal-bolus insulin. On discharge, the SGLT-2i was discontinued and the patient was discharged on insulin, metformin, omega-3 fatty acids, and fenofibrate.

10.
Chest ; 161(3): 710-727, 2022 03.
Article in English | MEDLINE | ID: covidwho-1491838

ABSTRACT

BACKGROUND: Pulmonary vascular microthrombi are a proposed mechanism of COVID-19 respiratory failure. We hypothesized that early administration of tissue plasminogen activator (tPA) followed by therapeutic heparin would improve pulmonary function in these patients. RESEARCH QUESTION: Does tPA improve pulmonary function in severe COVID-19 respiratory failure, and is it safe? STUDY DESIGN AND METHODS: Adults with COVID-19-induced respiratory failure were randomized from May14, 2020 through March 3, 2021, in two phases. Phase 1 (n = 36) comprised a control group (standard-of-care treatment) vs a tPA bolus (50-mg tPA IV bolus followed by 7 days of heparin; goal activated partial thromboplastin time [aPTT], 60-80 s) group. Phase 2 (n = 14) comprised a control group vs a tPA drip (50-mg tPA IV bolus, followed by tPA drip 2 mg/h plus heparin 500 units/h over 24 h, then heparin to maintain aPTT of 60-80 s for 7 days) group. Patients were excluded from enrollment if they had not undergone a neurologic examination or cross-sectional brain imaging within the previous 4.5 h to rule out stroke and potential for hemorrhagic conversion. The primary outcome was Pao2 to Fio2 ratio improvement from baseline at 48 h after randomization. Secondary outcomes included Pao2 to Fio2 ratio improvement of > 50% or Pao2 to Fio2 ratio of ≥ 200 at 48 h (composite outcome), ventilator-free days (VFD), and mortality. RESULTS: Fifty patients were randomized: 17 in the control group and 19 in the tPA bolus group in phase 1 and eight in the control group and six in the tPA drip group in phase 2. No severe bleeding events occurred. In the tPA bolus group, the Pao2 to Fio2 ratio values were significantly (P < .017) higher than baseline at 6 through 168 h after randomization; the control group showed no significant improvements. Among patients receiving a tPA bolus, the percent change of Pao2 to Fio2 ratio at 48 h (16.9% control [interquartile range (IQR), -8.3% to 36.8%] vs 29.8% tPA bolus [IQR, 4.5%-88.7%]; P = .11), the composite outcome (11.8% vs 47.4%; P = .03), VFD (0.0 [IQR, 0.0-9.0] vs 12.0 [IQR, 0.0-19.0]; P = .11), and in-hospital mortality (41.2% vs 21.1%; P = .19) did not reach statistically significant differences when compared with those of control participants. The patients who received a tPA drip did not experience benefit. INTERPRETATION: The combination of tPA bolus plus heparin is safe in severe COVID-19 respiratory failure. A phase 3 study is warranted given the improvements in oxygenation and promising observations in VFD and mortality. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT04357730; URL: www. CLINICALTRIALS: gov.


Subject(s)
COVID-19/complications , Pandemics , Respiratory Insufficiency/drug therapy , SARS-CoV-2 , Thrombosis/complications , Tissue Plasminogen Activator/administration & dosage , Adolescent , Adult , Aged , COVID-19/blood , COVID-19/epidemiology , Cross-Sectional Studies , Female , Fibrinolytic Agents/administration & dosage , Follow-Up Studies , Humans , Male , Middle Aged , Partial Thromboplastin Time , Respiratory Insufficiency/blood , Respiratory Insufficiency/etiology , Retrospective Studies , Thrombosis/blood , Thrombosis/drug therapy , Treatment Outcome , Young Adult
11.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2536-2543, 2022 08.
Article in English | MEDLINE | ID: covidwho-1467153

ABSTRACT

OBJECTIVE: To develop a practical thromboelastograph guided (TEG) anticoagulation protocol to guide the management of COVID-19 critically ill patients. DESIGN: An inter disciplinary team reviewed the current literature on hypercoagulability in critically ill COVID-19 patients, clinical management practices and challenges with high rates of thrombotic events despite anticoagulant therapies. SETTING: The largest tertiary care hospital within the Northwell Health System in New York. PATIENTS: COVID-19 invasively mechanically ventilated patients in Medical Intensive Care Unit Settings. METHODS: TEG was monitored in critically ill COVID-19 patients. Patterns were reviewed to guide the development of a treatment protocol leveraging TEG parameters to select anticoagulant therapy. Three patients are reported to highlight TEG profiles that led to the development of the algorithm. Clinical trajectory and treatment decisions were extracted retrospectively from the Electronic Health Record, with input from the intensivists. Anticoagulant use, laboratory and TEG values, and venous/arterial lower extremity (LE) ultrasound results were recorded. MAIN RESULTS: These patients demonstrated hypercoagulable TEG results despite prophylactic or therapeutic dosages of unfractionated heparin or low-molecular-weight heparin (LMHW). TEG surveillance identified functional fibrinogen and maximum amplitude in high-risk patients with hyper inflammatory markers. Anticoagulation assessment, TEG parameters, and LE ultrasound monitoring for venous and arterial thrombus were used to construct an algorithm to guide and escalate anticoagulant therapy. CONCLUSIONS: TEG provides patient-specific evidence for a hypercoagulable state in patients receiving all types of anticoagulant therapy. The proposed TEG algorithm guides anticoagulation management decisions to maintain or escalate anticoagulant dose and/or change choice of anticoagulant. A TEG algorithm may help negotiate the potential harm/benefit balance of full-dose anticoagulation in critically ill COVID-19 patients, by allowing for a more individualized approach that goes beyond the review of activated partial thromboplastin time (aPTT) levels.


Subject(s)
COVID-19 , Thrombophilia , Thrombosis , Anticoagulants/therapeutic use , Critical Illness/therapy , Heparin/adverse effects , Humans , Retrospective Studies , Thrombelastography/methods , Thrombophilia/drug therapy , Thrombosis/prevention & control
12.
J Thromb Haemost ; 18(7): 1752-1755, 2020 07.
Article in English | MEDLINE | ID: covidwho-1317980

ABSTRACT

A prothrombotic coagulopathy is commonly found in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). A unique feature of COVID-19 respiratory failure is a relatively preserved lung compliance and high Alveolar-arterial oxygen gradient, with pathology reports consistently demonstrating diffuse pulmonary microthrombi on autopsy, all consistent with a vascular occlusive etiology of respiratory failure rather than the more classic findings of low-compliance in ARDS. The COVID-19 pandemic is overwhelming the world's medical care capacity with unprecedented needs for mechanical ventilators and high rates of mortality once patients progress to needing mechanical ventilation, and in many environments including in parts of the United States the medical capacity is being exhausted. Fibrinolytic therapy has previously been used in a Phase 1 clinical trial that led to reduced mortality and marked improvements in oxygenation. Here we report a series of three patients with severe COVID-19 respiratory failure who were treated with tissue plasminogen activator. All three patients had a temporally related improvement in their respiratory status, with one of them being a durable response.


Subject(s)
Betacoronavirus/pathogenicity , Blood Coagulation Disorders/drug therapy , Coronavirus Infections/drug therapy , Fibrinolysis/drug effects , Fibrinolytic Agents/administration & dosage , Pneumonia, Viral/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Aged , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/virology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Fatal Outcome , Female , Fibrinolytic Agents/adverse effects , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Recovery of Function , SARS-CoV-2 , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
13.
Res Pract Thromb Haemost ; 4(6): 984-996, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1184616

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has caused a large surge of acute respiratory distress syndrome (ARDS). Prior phase I trials (non-COVID-19) demonstrated improvement in pulmonary function in patients ARDS using fibrinolytic therapy. A follow-up trial using the widely available tissue-type plasminogen activator (t-PA) alteplase is now needed to assess optimal dosing and safety in this critically ill patient population. Objective: To describe the design and rationale of a phase IIa trial to evaluate the safety and efficacy of alteplase treatment for moderate/severe COVID-19-induced ARDS. Patients/Methods: A rapidly adaptive, pragmatic, open-label, randomized, controlled, phase IIa clinical trial will be conducted with 3 groups: intravenous alteplase 50 mg, intravenous alteplase 100 mg, and control (standard-of-care). Inclusion criteria are known/suspected COVID-19 infection with PaO2/FiO2 ratio <150 mm Hg for > 4 hours despite maximal mechanical ventilation management. Alteplase will be delivered through an initial bolus of 50 mg or 100 mg followed by heparin infusion for systemic anticoagulation, with alteplase redosing if there is a >20% PaO2/FiO2 improvement not sustained by 24 hours. Results: The primary outcome is improvement in PaO2/FiO2 at 48 hours after randomization. Other outcomes include ventilator- and intensive care unit-free days, successful extubation (no reintubation ≤3 days after initial extubation), and mortality. Fifty eligible patients will be enrolled in a rapidly adaptive, modified stepped-wedge design with 4 looks at the data. Conclusion: Findings will provide timely information on the safety, efficacy, and optimal dosing of t-PA to treat moderate/severe COVID-19-induced ARDS, which can be rapidly adapted to a phase III trial (NCT04357730; FDA IND 149634).

14.
Arch Rehabil Res Clin Transl ; 3(2): 100113, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1086766

ABSTRACT

OBJECTIVE: To optimize the ability of hospitalized patients isolated because of coronavirus disease 2019 (COVID-19) to participate in physical therapy (PT). DESIGN: This was a prospective quality improvement trial of the feasibility and acceptability of a "hybrid" in-person and telerehabilitation platform to deliver PT to hospitalized adults. SETTING: Inpatient wards of a tertiary care, multispecialty academic medical center in the greater New York City metropolitan area. PARTICIPANTS: A convenience sample of 39 COVID-19-positive adults (mean age, 57.3y; 69% male) all previously community dwelling agreed to participate in a combination of in-person and telerehabilitation sessions (N=39). INTERVENTIONS: Initial in-person evaluation by physical therapist followed by twice daily PT sessions, 1 in-person and 1 via a telehealth platform meeting Health Insurance Portability and Accountability Act confidentiality requirements. The communication platform was downloaded to each participant's personal smart device to establish audiovisual contact with the physical therapist. MAIN OUTCOME MEASURES: We used the 6-clicks Activity Measure of Post-Acute Care (AM-PAC) to score self-reported functional status premorbidly and by the therapist at baseline and discharge. RESULTS: Functional status measured by AM-PAC 6-clicks demonstrated improvement from admission to discharge. Barriers to participation were identified and strategies were planned to facilitate use of the platform in the future. CONCLUSIONS: A consistent and structured protocol for engaging patient participation in PT delivered via a telehealth platform was successfully developed. A process was put in place to allow for further development, recruitment, and testing in a randomized trial.

15.
Chest ; 159(3): 933-948, 2021 03.
Article in English | MEDLINE | ID: covidwho-1064923

ABSTRACT

BACKGROUND: Cytokine storm is a marker of coronavirus disease 2019 (COVID-19) illness severity and increased mortality. Immunomodulatory treatments have been repurposed to improve mortality outcomes. RESEARCH QUESTION: Do immunomodulatory therapies improve survival in patients with COVID-19 cytokine storm (CCS)? STUDY DESIGN AND METHODS: We conducted a retrospective analysis of electronic health records across the Northwell Health system. COVID-19 patients hospitalized between March 1, 2020, and April 24, 2020, were included. CCS was defined by inflammatory markers: ferritin, > 700 ng/mL; C-reactive protein (CRP), > 30 mg/dL; or lactate dehydrogenase (LDH), > 300 U/L. Patients were subdivided into six groups: no immunomodulatory treatment (standard of care) and five groups that received either corticosteroids, anti-IL-6 antibody (tocilizumab), or anti-IL-1 therapy (anakinra) alone or in combination with corticosteroids. The primary outcome was hospital mortality. RESULTS: Five thousand seven hundred seventy-six patients met the inclusion criteria. The most common comorbidities were hypertension (44%-59%), diabetes (32%-46%), and cardiovascular disease (5%-14%). Patients most frequently met criteria with high LDH (76.2%) alone or in combination, followed by ferritin (63.2%) and CRP (8.4%). More than 80% of patients showed an elevated D-dimer. Patients treated with corticosteroids and tocilizumab combination showed lower mortality compared with patients receiving standard-of-care (SoC) treatment (hazard ratio [HR], 0.44; 95% CI, 0.35-0.55; P < .0001) and with patients treated with corticosteroids alone (HR, 0.66; 95% CI, 0.53-0.83; P = .004) or in combination with anakinra (HR, 0.64; 95% CI, 0.50-0.81; P = .003). Corticosteroids when administered alone (HR, 0.66; 95% CI, 0.57-0.76; P < .0001) or in combination with tocilizumab (HR, 0.43; 95% CI, 0.35-0.55; P < .0001) or anakinra (HR, 0.68; 95% CI, 0.57-0.81; P < .0001) improved hospital survival compared with SoC treatment. INTERPRETATION: The combination of corticosteroids with tocilizumab showed superior survival outcome when compared with SoC treatment as well as treatment with corticosteroids alone or in combination with anakinra. Furthermore, corticosteroid use either alone or in combination with tocilizumab or anakinra was associated with reduced hospital mortality for patients with CCS compared with patients receiving SoC treatment.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 , Cytokine Release Syndrome , Immunomodulation , Interleukin 1 Receptor Antagonist Protein/administration & dosage , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Cytokine Release Syndrome/virology , Drug Repositioning , Drug Therapy, Combination/methods , Electronic Health Records/statistics & numerical data , Humans , Immunosuppressive Agents/administration & dosage , Medication Therapy Management/statistics & numerical data , Middle Aged , Outcome and Process Assessment, Health Care , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Survival Analysis , United States/epidemiology
16.
Eur J Gastroenterol Hepatol ; 33(1S Suppl 1): e42-e49, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1010682

ABSTRACT

Liver dysfunction manifesting as elevated aminotransferase levels has been a common feature of coronavirus disease-2019 (COVID-19) infection. The mechanism of liver injury in COVID-19 infection is unclear. However, it has been hypothesized to be a result of direct cytopathic effects of the virus, immune dysfunction and cytokine storm-related multiorgan damage, hypoxia-reperfusion injury and idiosyncratic drug-induced liver injury due to medications used in the management of COVID-19. The favored hypothesis regarding the pathophysiology of liver injury in the setting of COVID-19 is cytokine storm, an aberrant and unabated inflammatory response leading to hyperproduction of cytokines. In the current review, we have summarized the potential pathophysiologic mechanisms of cytokine-induced liver injury based on the reported literature.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Liver Diseases/virology , COVID-19/complications , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/virology , Cytokines , Humans
17.
Arthritis Rheumatol ; 73(1): 23-35, 2021 01.
Article in English | MEDLINE | ID: covidwho-757767

ABSTRACT

The clinical progression of the severe acute respiratory syndrome coronavirus 2 infection, coronavirus 2019 (COVID-19), to critical illness is associated with an exaggerated immune response, leading to magnified inflammation termed the "cytokine storm." This response is thought to contribute to the pathogenicity of severe COVID-19. There is an initial weak interferon response and macrophage activation that results in delayed neutrophil recruitment leading to impeded viral clearance. This causes prolonged immune stimulation and the release of proinflammatory cytokines. Elevated inflammatory markers in COVID-19 (e.g., d-dimer, C-reactive protein, lactate dehydrogenase, ferritin, and interleukin-6) are reminiscent of the cytokine storm seen in severe hyperinflammatory macrophage disorders. The dysfunctional immune response in COVID-19 also includes lymphopenia, reduced T cells, reduced natural killer cell maturation, and unmitigated plasmablast proliferation causing aberrant IgG levels. The progression to severe disease is accompanied by endotheliopathy, immunothrombosis, and hypercoagulability. Thus, both parts of the immune system-innate and adaptive-play a significant role in the cytokine storm, multiorgan dysfunction, and coagulopathy. This review highlights the importance of understanding the immunologic mechanisms of COVID-19 as they inform the clinical presentation and advise potential therapeutic targets.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Immunity, Innate/immunology , Respiratory Distress Syndrome/immunology , Antibody Formation , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/physiopathology , Complement Inactivating Agents/therapeutic use , Cytokines/antagonists & inhibitors , Cytokines/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Immunologic Factors/therapeutic use , Immunologic Memory , Immunosuppressive Agents/therapeutic use , Interferons/immunology , Killer Cells, Natural/immunology , Lymphopenia/immunology , Macrophage Activation/immunology , Neutrophil Infiltration/immunology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology , Thrombophilia/blood , Thrombophilia/immunology , Thrombosis/blood , Thrombosis/immunology , COVID-19 Drug Treatment
19.
Diagn Progn Res ; 4: 11, 2020.
Article in English | MEDLINE | ID: covidwho-324393

ABSTRACT

BACKGROUND: The need for life-saving interventions such as mechanical ventilation may threaten to outstrip resources during the Covid-19 pandemic. Allocation of these resources to those most likely to benefit can be supported by clinical prediction models. The ethical and practical considerations relevant to predictions supporting decisions about microallocation are distinct from those that inform shared decision-making in ways important for model design. MAIN BODY: We review three issues of importance for microallocation: (1) Prediction of benefit (or of medical futility) may be technically very challenging; (2) When resources are scarce, calibration is less important for microallocation than is ranking to prioritize patients, since capacity determines thresholds for resource utilization; (3) The concept of group fairness, which is not germane in shared decision-making, is of central importance in microallocation. Therefore, model transparency is important. CONCLUSION: Prediction supporting allocation of life-saving interventions should be explicit, data-driven, frequently updated and open to public scrutiny. This implies a preference for simple, easily understood and easily applied prognostic models.

20.
JAMA ; 323(20): 2052-2059, 2020 05 26.
Article in English | MEDLINE | ID: covidwho-101977

ABSTRACT

Importance: There is limited information describing the presenting characteristics and outcomes of US patients requiring hospitalization for coronavirus disease 2019 (COVID-19). Objective: To describe the clinical characteristics and outcomes of patients with COVID-19 hospitalized in a US health care system. Design, Setting, and Participants: Case series of patients with COVID-19 admitted to 12 hospitals in New York City, Long Island, and Westchester County, New York, within the Northwell Health system. The study included all sequentially hospitalized patients between March 1, 2020, and April 4, 2020, inclusive of these dates. Exposures: Confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by positive result on polymerase chain reaction testing of a nasopharyngeal sample among patients requiring admission. Main Outcomes and Measures: Clinical outcomes during hospitalization, such as invasive mechanical ventilation, kidney replacement therapy, and death. Demographics, baseline comorbidities, presenting vital signs, and test results were also collected. Results: A total of 5700 patients were included (median age, 63 years [interquartile range {IQR}, 52-75; range, 0-107 years]; 39.7% female). The most common comorbidities were hypertension (3026; 56.6%), obesity (1737; 41.7%), and diabetes (1808; 33.8%). At triage, 30.7% of patients were febrile, 17.3% had a respiratory rate greater than 24 breaths/min, and 27.8% received supplemental oxygen. The rate of respiratory virus co-infection was 2.1%. Outcomes were assessed for 2634 patients who were discharged or had died at the study end point. During hospitalization, 373 patients (14.2%) (median age, 68 years [IQR, 56-78]; 33.5% female) were treated in the intensive care unit care, 320 (12.2%) received invasive mechanical ventilation, 81 (3.2%) were treated with kidney replacement therapy, and 553 (21%) died. As of April 4, 2020, for patients requiring mechanical ventilation (n = 1151, 20.2%), 38 (3.3%) were discharged alive, 282 (24.5%) died, and 831 (72.2%) remained in hospital. The median postdischarge follow-up time was 4.4 days (IQR, 2.2-9.3). A total of 45 patients (2.2%) were readmitted during the study period. The median time to readmission was 3 days (IQR, 1.0-4.5) for readmitted patients. Among the 3066 patients who remained hospitalized at the final study follow-up date (median age, 65 years [IQR, 54-75]), the median follow-up at time of censoring was 4.5 days (IQR, 2.4-8.1). Conclusions and Relevance: This case series provides characteristics and early outcomes of sequentially hospitalized patients with confirmed COVID-19 in the New York City area.


Subject(s)
Betacoronavirus , Comorbidity , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/mortality , Diabetes Complications , Female , Hospitalization , Humans , Hypertension/complications , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Risk Factors , SARS-CoV-2 , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL